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Abstract—The word association game Codenames challenges
the AI community with its requirements for multimodal language
understanding, theory of mind, and epistemic reasoning. Previous
attempts to develop AI agents for the game have focused on
word embedding techniques, which while good with other models
using the same technique, can sometimes suffer from brittle
performance when paired with other models. Recently, Large
Language Models (LLMs) have demonstrated enhanced capabil-
ities, excelling in complex cognitive tasks, including symbolic and
common sense reasoning. In this paper, we compare a range of
recent prompt engineering techniques for GPT-based Codenames
agents. While there was no significant game score improvement
over the baseline agent, we did observe qualitative changes in
agents’ strategies suggesting that further refinement has potential
for score improvement. We also propose a revised Codenames AI
competition specifically focusing on the use of LLM agents.

Index Terms—Codenames, ChatGPT, Prompt Engineering,
Game Playing Agents, AI

I. INTRODUCTION

Games have long been favoured as test beds for Artificial
Intelligence (AI) due to them providing controlled and well
defined environments suitable for developing and benchmark-
ing AI capabilities. Previously, perfect information competitive
games such as Chess and Go have been conquered by AI’s
such as Deep Blue and AlphaGo [1], [2]. Recently, games re-
quiring cooperation, natural language understanding, or theory
of mind have proved challenging for AI to master [3], [4]. One
game in particular that captures all of these challenges is the
word association game Codenames [5].

Codenames is a popular language-based cooperative game
in which teams of players have to discern relationships be-
tween words using single word clues given by their teammates.
Two teams - each with a codemaster and guesser - share a
board comprising of 25 words. The codemaster is secretly
given their teams target words, and must deliver a series
of one-word clues that help the guesser correctly identify
these. Previous approaches to develop Codenames AI have
shown good performance when paired agents are using the
same word association strategy [6]. While there is some work
on developing more adaptable models [7] the majority of
the models exhibit lowered performance when playing with
teammates using a different approach.

Large Language Models (LLMs) known for their flexibility
in natural language understanding across many domains, offer
a potential solution to this limitation. The recent explosion in

popularity of LLMs has seen them being applied to many
domains [8], [9], yet there is little work using them for
Codenames. This is surprising given the many emergent ca-
pabilities displayed by LLMs being useful for performance
in Codenames. In particular, evidence of theory of mind
reasoning emerging from LLMs shows potential for their use
in Codenames, which requires an understanding of how a
teammate might interpret or formulate a clue [10]. The asso-
ciated burgeoning field of prompt engineering is also seeing a
wealth of techniques to improve LLM performance in different
tasks. Investigating the impact of various prompting techniques
on performance is more accessible to novice programmers,
as it primarily involves using natural language without the
need to train new models. This provides an ideal opportunity
to develop diverse AI agents from both academic researchers
and novice enthusiasts alike, potentially sparking widespread
interest and competition.

II. RELATED WORK

In this section we will discuss the previous approaches
used to developing Codenames AI agents, as well as recent
developments in the field of prompt engineering that might
provide promising avenues to utilise in Codenames agents.

A. Codenames AI

Codenames has garnered interest from the AI community
due to it requiring multi-modal language understanding, asym-
metric cooperation, theory of mind, and epistemic reasoning
[6]. Kim et al. (2019) introduced the first Codenames com-
petition with agents using word embedding techniques. They
found models paired with themselves achieved 100% accuracy,
but achieved much lower results when paired with other
teammates. Jaramillo et al. (2020) extended upon this work,
developing agents which utilised term frequency - inverse
document frequency (TF-IDF), Naive-Bayes, and the GPT-2
Transformer model. They found that the transformer model,
when compared to bots developed by Kim et al. (2019), met
or exceeded performance in all metrics, with the transformer
model being preferred as codemaster (clue giver) when tested
with human participants [11].

Further tests with human evaluators were done by Koyyala-
gunta et al. (2021), who developed multiple methods to
improve Codenames AI performance for knowledge graphs,
word embeddings and knowledge-based methods. As they



were testing with human evaluators, their aim was to cre-
ate agents that present more human interpretable clues, as
word embedding agents would sometimes give nonsensical
but correctly guessed clues when paired with another word
embedding guesser [12]. Other researchers have focused on
agents that can adapt to their teammate. Archibald et al.
(2024) created the Adaptive Codenames Ensemble (ACE)
which changes which base Codenames agent it gives clues
with depending on how their teammate guesses [7]. Despite
the high focus on word embedding techniques, recent work
shows the potential of prompting techniques for improved
Codenames performance. Ozturkler et al. (2023) applied the
LLM prompting technique ThinkSum to promote deductive
reasoning in Codenames clue guessing. They achieved a score
roughly 20% better than few-shot prompting for Codenames
guesser agents [13]. This promising start in exploring prompt
engineering techniques for Codenames, given the increased
focus on prompt engineering and LLMs, indicates significant
potential for further research in developing Codenames agents.

B. Prompting Techniques

Prompt engineering, a burgeoning field within AI research,
focuses on enhancing LLM response quality by refining in-
put prompts. The field has recently seen significant growth,
producing many innovative techniques grounded in cognitive
theories that emulate human problem-solving strategies, such
as subdividing problems or engaging in self-reflection [14],
[15].

These techniques have been shown to be effective in boost-
ing LLM performance across tasks including common sense,
arithmetic, and symbolic reasoning, and serve as valuable
benchmarks for LLM capabilities [16]. The most popular
among these, Chain-of-Thought (CoT) reasoning, introduced
by Wei et al. (2022), provides models with few-shot exemplars
and prompts them to split tasks into subproblems and step
through them sequentially. This was shown to significantly
enhance task performance even in zero-shot scenarios by
simply appending “Show me step by step” to the prompt
[17], [18]. Building on CoT, Wang et al. (2023) develop
a self-consistency approach that selects the most consis-
tent response from multiple reasoning paths, while Yao et
al. (2023) proposed Tree-of-Thought (ToT) which employs
heuristic searches across multiple paths [14], [19]. These and
similar techniques improve model performance for tasks that
require non-linear thinking or multiple variables [20].

Additional techniques that mimic the way humans itera-
tively refine pieces of writing or learn through self-explanation
have proven effective. These ask models to follow a similar
process of self critique or explanation and further improve
performance for certain tasks compared to CoT prompting
[15], [21]. Additionally, Wang et al. (2024) introduced Solo
Performance Prompting (SPP), which employs a committee of
personas to evaluate various solutions, enhancing the robust-
ness and accuracy of responses [22].

While all of these techniques have shown superior per-
formance in some tasks solving more complex tasks often

involves using a combination of these techniques [20]. As
identified by Srivastava et al. (2022), generating a clue in
Codenames is considered a “composite” task which requires
several distinct skills [16]. It is therefore unclear which tech-
nique - or combination of techniques - would be best suited
for the problem of giving and guessing Codenames clues.

III. METHODOLOGY

Using the pre-existing Codenames competition framework,
we developed codemaster (clue giver) and guesser agents
that utilise OpenAI’s GPT-4 model. Both agents are provided
with the same base description of the game’s rules as an
initial system prompt, along with whether they are playing
as the codemaster or guesser. For the codemaster agent, we
implemented six versions with different prompt-engineered
instructions. These agent versions are summarised below, with
full prompts and game rules available in our public code
repository.1

1) Default: This agent operates as a baseline for compar-
ing other prompt-engineering approaches. The codemaster is
provided with the remaining words and their associated labels
(red, blue, civilian or assassin); and is asked to provide a single
clue (word and required number for the guesses) in a precise
format.

2) Cautious: This agent is an extended version of the
Default agent with an additional prompt instructing it to
always provide the number one for the number for the guesses
in its clue. The intention here is to create a cautious agent that
only needs to find an association with a single red word.

3) Risky: This agent is an extended version of the Default
agent with an additional prompt instructing it to pick a large
number for the number for the guesses in its clue. The
intention here is to produce a risky agent that tries to find
associations between many red words.

4) Chain of Thought: This agent is an extended version of
the Default agent that additionally utilises the zero-shot CoT
technique discussed in [18]. This is done by appending the
default prompt with “Solve the task step by step”. This results
in the agent responding in a stepwise fashion, explaining asso-
ciations between a subset of target words, suitable candidate
clues for those words, and how these are unrelated to non-
target words.

5) Self Refine: This agent uses a series of three responses to
give a refined final answer, utilising the technique outlined in
[21]. This involves instructing the agent to give an initial clue,
in the same manner as the Default agent. The agent is then
instructed to give feedback on this initial clue, critiquing it on
the basis of its relation to the red words and low likelihood of
associations with blue, assassin and civilian words. Finally the
agent is then instructed to give a second clue but incorporating
the previous feedback. Ideally this agent is able to pick up on
any errors in makes in the initial clue, improving upon them
in the second attempt.

1https://github.com/stepmat/Codenames GPT/tree/CoG 2024

https://github.com/stepmat/Codenames_GPT/tree/CoG_2024


TABLE I
SUMMARY STATISTICS FOR ALL AGENT VERSIONS ACROSS 50 GAMES

Agent Mean Median Min Std Dev Loss
Default 9.86 7 5 6.78 16%

Cautious 9.80 9 8 3.99 6%
Risky 12.00 8 4 8.29 28%

Chain of Thought 10.92 7 4 8.08 24%
Self Refine 9.28 7 5 6.49 14%

Solo Performance 11.18 7 4 7.92 24%

6) Solo Performance: This agent uses the Solo-
Performance Prompting (SPP) technique outlined in [22].
After receiving the game’s rules and current board state, the
agent is prompted to internally construct multiple personas
that help to formulate an appropriate clue. The agent then
produces a back and forth dialogue between these personas,
with each proposing or criticising clues until a consensus
is reached. This method also includes a small number of
few-shot examples, in order to have the agent perform SPP
in the correct format.

IV. EXPERIMENTS

To evaluate the performance of GPT-4 for playing Code-
names, as well as the effectiveness of each prompt engineering
technique, we played 50 individual games for each code-
master version using the available Codenames competition
framework. Both the codemaster and guesser agents utilised
the ‘gpt-4-1106-preview’ model from OpenAI, with all model
hyperparamters remaining at their default values. Full results
for these experiments are available in the provided code
repository, with summary results and qualitative observations
described below.

A. Results

Table I provides a summary of how each agent performed
across the 50 experiment games. Mean, Median, Min and
Standard Deviation (Std Dev) each relate to the final score
of the game. In this case, a lower score indicates a better
performance. The Loss column refers to the percentage of
games that ended in a loss. For the current Codenames
competition rules a loss gives a score of 25 points, meaning
that losing a game often has a disproportionately high impact
on the Mean and Std Dev results.

V. DISCUSSION

Based on the results of our experiments, none of the imple-
mented prompt engineering techniques produced a significant
performance improvement over the Default agent. However,
we were able to observe several differences in how these
agents played.

Looking first at the Cautious and Risky agents, these
demonstrated highly divergent playstyles. The Cautious agent
would always choose the number one for its clues, leading to
a minimum score of 8 (the exact number of words that needed
to be selected) as well as a low chance of losing. The Risky

agent gave the opposite behaviour, having a low minimum
score but also an increased number of losses. Given that a loss
has such a high impact on the final score, it would appear that
a cautious approach may be a more beneficial strategy for the
current version of the game.

The Chain of Thought and Solo Performance agents ap-
peared to favour higher clue numbers, perhaps overthinking the
problem and leading to a riskier style of play. In comparison,
the Chain of Thought agent tended to revise the number
provided alongside its clue down if the provided feedback
indicated skepticism or hesitancy about the initial clue. This
likely worked in the Self Refine agent’s favour, as our earlier
results already demonstrated that a more cautious style of play
tends to lead to a better overall score.

A. Qualitative Observations

Observing the reasoning given by different versions of our
codemaster agents reveals the provided clues are often closely
associated with one of the target words, but that the agent
will claim a connection to other target words that is highly
tenuous. For example, when the Solo Performance agent gave
the clue (‘OCEAN’, 2) it claimed that “This clue should guide
the guesser to BEACH and TRUNK (as in the trunk of a car
often bringing items to the beach)”. Agents would also often
inaccurately consider the potential relationship of their clue to
other non-target words, which is especially important for the
assassin word. For example, when the Chain of Thought agent
gave the clue ‘DINNER’ it reasoned that “DINNER does not
give a clue towards the assassin word KNIFE that is actually
related to the dinner setting, but not typically described by
DINNER itself”.

B. Prior Codenames Agents

When comparing the performance of our GPT agents to
prior agent results presented in [6], [11], it would appear
that we are not able to match their performance. However,
all of these prior agents have been developed for the exact
set of 395 available words currently present in the game, and
would be unable to operate successfully if new words were
added. Our presented agents do not have this restriction, and
are able to play using a completely new set of words without
any additional training. Many of these prior agents also rely
on identical codemaster-guesser agent pairs to perform well.
While our experiments do use the same GPT-4 base model for
the codemaster and guesser agents, they are not designed with
this matching in mind.

C. Competition Rule Deviations

The current Codenames competition framework deviates
from the original Codenames rules in two important aspects.
Firstly, the game has been reworked into a purely coopera-
tive game, where only the red team gives clues and makes
guesses. As a result, the blue and civilian tiles function
almost identically, with the only difference being that the
red team loses if they select all the blue tiles (which is
highly unlikely). Secondly, the guesser cannot deviate from



the number of guesses specified in the codemaster’s clue. In
the original game’s rules, the guesser can specify any number
of tiles between one and one more than the number of guesses
specified by the codemaster (e.g. if the codemaster’s clue
specifies the number 3, the guesser can select 1-4 words).

Both of these rule changes have a significant impact on
how the game is played, removing elements that contribute
to the game’s strategic depth and social deduction aspects.
Having a second team increases the negative impact of picking
a tile with the opposing teams colour and provides additional
information about the remaining tiles on the board (via the
clues and guesses made by the opposing team). Permitting
the guesser to deviate from the number of guesses also adds
to the strategy of the game, allowing clue information to be
reused over multiple turns (in the event of an incorrect guess)
and for the guesser to stop early if they are unsure about the
codemaster’s clue.

VI. FUTURE WORK

The main catalyst for this preliminary study into the ef-
fectiveness of GPT models for playing Codenames was the
desire to organise a new Codenames AI competition based
on the original game rules (competitive teams of agents rather
than purely cooperative) with a renewed focus on LLM agents
and student submission accessibility. The authors of this paper
intend to develop a new Codenames framework based on the
original game’s rules over the coming months, and submit an
application for an AI agent competition using this framework
to the IEEE Conference on Games (CoG) conference in
2025. Agents for this competition will also be evaluated on a
previously unseen set of tile words, increasing the emphasise
on general AI reasoning. We feel that the recent resurgence in
LLM advancements and interest over the past few years, the
competition will have a wide appeal to members of the Game
AI research community.

From the prompt engineering side, we intentionally kept our
prompts as broad and general as possible for the engineering
techniques used. However, its likely that additional prompts fo-
cused on addressing each agent’s weaknesses (such as adding
and “assassin skeptic” role for the Solo Performance agent)
could help to reduce the number of losses and increase overall
performance. Prompt engineering techniques could also be
applied to the guesser agent as well as the codemaster. We
hope that the aforementioned AI competition will help to
increase research into developing and applying new prompt
engineering approaches for Codenames.

VII. CONCLUSION

Within this paper, we investigated the effectiveness of GPT-
4 for providing suitable clues and guesses for the word-based
game Codenames. We also explored the impact that several
basic prompt-engineering techniques had. While none of these
significantly improved the performance of our default agent,
they did appear to affect the agent’s overall playstyle. We
feel that word games such as Codenames offer a unique
challenge and performance benchmark for advanced LLM

models, and hope to organise a revised AI competition focused
on developing Codenames agents.
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